New York State Environmental Public Health Tracking System: Features and Functions

Thomas Talbot
Environmental Health Surveillance Section
New York State Department of Health

What is surveillance?

Systematic ongoing collection and analysis of data and the timely dissemination of information to those who need to know so that action can be taken.

Demonstrate a surveillance system Provides "One-stop shopping"

Access to data

Data linking and integration

Analysis

Surveillance System Framework

Health Data

- Hospitalizations (SPARCS)
 - Asthma
 - Cardiovascular disease
- Mortality (death certificates)
 - Cardiovascular disease
- Birth outcomes
 - Birth weight & prematurity (birth certificates)
 - Birth Defects (Congenital Malformations Registry)
- Geographic scale of the health data
 - ZIP Code
 - Residential address
 - Exposure Regions

Environmental Hazard Data Air Pollution

- Monitoring data (DEC)
 - Ozone
 - Particulate matter
- Modeled data
 - Meteorological models using emissions data (EPA)
 - Interpolated data (NYSDOH, EPA)
- Geographic level of air pollution data
 - Grid cells
 - Nearest monitoring station
 - ZIP Code

Geocoding

Use enhanced street files

 NY Accident Incident Location Information System (ALIS)

Real Property Centroids

MapMarker Software

Ungeocoded Records

 Ungeocoded records assigned to exposure zones based on population distribution within each ZIP Code using Census Block Data Able to query, display and analyze the data using a Menu System Developed in MapInfo

 Developed MapInfo interface with SAS and other program such as SatScan.

Linking Health Data to Environmental Hazard Data August 3

Potential uses of the EPHT surveillance system

 Respond to queries about environmental hazards & health outcomes

2. Identify unusual patterns and trends

3. Develop and evaluate public health interventions

Some uses of the EPHT surveillance system

4. Provide simple measures of association

5. Facilitate research

4. Other uses ...

Functions of the EPHT Surveillance System

Questions about Hazards

Questions about Health Outcomes

Other Factors Influencing Health

Population Demographics

within One Mile of a Site

Population	33,520
Female	51%
Male	49%
Age <6	6%
Age 6-19	16%
Age 20-64	68%
Age >64	11%
White	70%
Black	20%
Asian	4%
Native Americans	0%
Pacific Islanders	0%
Other race	2%
Multi-racial	3%
Hispanic	6%
Minority	32%
Nursing home residents	294
Under poverty level	23%
Median household income	\$28,802

Identify unusual patterns

How do rates of disease vary across the state?

Is the disease clustered?

Where are the most likely clusters?

Could these high rates be due to chance?

Mapping Rates of Disease

Rates vary widely due to chance due to small numbers

 Developed adaptive spatial filter program to smooth data.

- Rates based on minimum population size.
- Create Multi- resolution maps to understand how rates change at different scales

Talbot, Kulldorff, Forand, Haley, Evaluation of spatial filters to create smooth rate maps. Statist Med. 2000: 19:2399-2408

Resolution Threshold = 250 Births

Low Birth Weight Rate

P Value
High & Low Risk

Resolution Threshold = 1,000 Births

Low Birth Weight Rate

P Value
High & Low Risk

p<0.05 Restictions; no cluster can contain more than 10% of births.

Identify Trends

Point & Click to Produce Trend Charts

Click on HotLink tool to activate links to graphs

Ozone and Asthma Hospitalization: Year 2001

Average Daily 8 Hours Maximum Ozone in New York State By Monitoring Station (1998 to 2002)

Measures of Association

- Regression Analyses
 - Multivariate Linear Regression

- Simultaneous Auto Regressive Models
- Case crossover Conditional Logistic
 Regression

Case-crossover Approach

Hypothetical Changes in Asthma Hospitalization Rates in Relation to Air Pollutant Levels

Day of	% change
Exposure	in hosp.
Same day	+ 2%
Previous day	+4%
2 days before	+1%
3 days before	0%
Average of past 2 days	+3%

Percent increase per 10 ug/m³ PM_{2.5}

Hypothetical Changes in Asthma Hospitalization Rates in Relation to Air Pollutant Levels, by Region

Region

Eastern NY

Western NY

Long Island

New York City

% change and 95% confidence interval per 10 ug/m³ PM_{2.5}

Hospital reporting rates. Hospitals with poor reporting by blue circles

The End